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ABSTRACT

A set of highly efficient computer programs based on the
Marcum and Swerling's analysis on radar detection has been written
in MATLAB to evaluate the probability of detection. The programs
are based on accurate methods unlike the detectability method which
1s based on approximation. This thesis also outlines radar
Jerecticn theory and target models as a background.

The goal of this effcx:: is to provide a set of efficient

cemputer programs for student usage and teacher's aid. Programs

are designed to be user friendly and run on personal ccmputers.
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I. 1INTRODUCTION

A. BACKGROUND

The Marcum-Swerling (M-S} models are the most commonly
used target models in modern radar analvsis. The other target
models have also developed over period of time, such as chi-
square (Weinstock), log-normal. However in this thesis only M-
S models will be discussed.

Histrocially, the earliest descriptions of a target were
in terms of a single cross-sectional area value. This quantity
was usually some type of an average cross section over the
aspect angles which the system designer considered most
probable. The approach led the system designers to associate
a single cross-sectional area of unvarying value, with a
target and thus led to the model of a steady-state target.
Following this concept, systems were designed to achieve a
somewhat arbitrarily specified signal-to-noise ratio at some
specified maximumm operating range. The inherent basic
assumption was that the required detection capability and
parameter estimation accuracy could be achieved if this goal
was met. The dominant rule of the human observer in early

detection systems tended to make this approach acceptable. As

the requirements on radar systems became more demanding, and




as automatic processing of radar returns was developed, the
situation underwent a change. The desire to optimize radar
designs established the need for more precise target models.

The initial work of J.I.Marcum of the RAND Corporation in
the late 1940s applied the work of Rice of the Bell Telephone
Laborateries, relating to steady-state signals immersed in
noise, to the problem of radar signal detection. Marcum
effectively gave a complete treatment to the statistical
problem of a group of constant amplitude signal pulses in the
presence of noise. His work resulted in an evaluation of
previously untabulated functions ard a direct application of
the results to a gamut of problems in automatic detection.
The statistical approach used in Marcum's studies is the basis
for much of the work that followed in the radar detection
area.

The detection of signals resulting from a fluctuating
target is basically different than for signals resulting from
a non-fluctuating target. A requirement remained, therefore,
to produce the same type of analysis and supporting tabulation
of basic functions for a fluctuating target as had been done
by Marcum for the nonfluctuating target. This work was done by
Swerling, in the early 1950s. He extended Marcum's approach by
employing four target models and two different density
functions in conjunction with two extremes of correlation.

Swerling's case 1 and case 2 are the target mcdels which

describe large complex targets, such as aircraft, rain




clutter, and terrain clutter. They represent two extremes of
correlation, and the statistical model is derivable from the
physical scattering characteristics of such bodies. It can
also be stated that empirically derived data on such targets
are in very good agreement with those obtained from the
mathematical model.

At the time Swerling was doing his work, it was realized
that the model suitable for large complex targets would not
give an adequate description of large simple structures. The
problem of selecting a model to describe this type or class of
target is a difficult one to handle directly. There 1s no
obvious parallel development for it from the scattering
characteristics of a specific body type. The approach
employed was to establish qualitatively the basic statistical
behavior of the target cross sections of interest. Having done
this, a convenient form of distribution was selected.

Swerling picked a class of distributions know as the chi-
square class, which has the exponential density function
distribution as one member By an appropriate selecticn of a
class parameter, namely, the number of degrees of freedom, the
qualitative properties desired for the distribution associated
with large simple structures was obtained. Swerling's cases 3
and 4 represent targets that behave as 1f they have four
degrees of freedom and are valid for targets such as rockets,
missiles, and space-based satellites.

Swerling's two classes of density functions evaluated at




two extremes of correlation, together with Marcum's constant
target model (case 5S), have been the bases of virtually all
radar detection analyses.

Five target models according to Marcum-Swerling scheme are
as follows:

a) Swerling case 1 - The echo pulses received from a
target on any one scan are of constant amplitude throughout
the entire scan but are independent ( uncorrelated ) from scan
to scan. This assumption ignores the effect of the antenna
beam shape on the echo amplitude. The probability density
function of the radar cross section ¢ 1s given by the
exponential density function.

w(a,3) =2el-0/@ a>0 (1)
g

where & 1s the average radar cross section

b) Swerling case 2 - With the same dansity function as
case 1 but the fluctulations are more rapid than in case 1 and
are taken to be independent from pulse ton pulse rather than
from scan to scan.

c) Swerling case 3 - The fluctuation is assumed to be
independent from scan to scan, as in case i, but the
probability density function is given by the chi-square

distribution with four degrees of freedom.

w(0,3) = TK_}T)—T %( (Ka/g) K e-(xa/'&)._._‘l__(:_ e29%, (K=2) (g



d) Swerling case 4 - With the same density function but
the fluctuation is pulse-to-pulse according to Eg(2).

e} Marcum's model (case S) - With the constant density
function which represents steady-state target.

The probability density function of equation (1), applies
to a complex target consisting of many independent scatterers
of approximately equal echo areas. The probability density
function assumed in case 3 and 4 is more indicative of targets
that can be represented as one large reflector together with
other small reflectors.

There are curves available that can be used to calculate
the probability of detection for each of Swerling cases. but
for parameters between those charted, the designer has to
interpolate. This can be inaccurate sometimes. Therefore it is
convenient and useful to provide accurate programs to

calculate for any parameters needed by the user.

B. RADAR RECEIVER MODEL

1. DESCRIPTION

The typical super heterodyne radar receiver and the
mathematically receiver model is depicted in Fig 1. The
difference between square-law and linear envelope detector is
that a square-law envelope detector is used in the small
signal optimum receiver and a linear envelope detector is used
in the large-signal receiver. For mathematical convenience,

the square-law detector is applied, but the performance cf




both detectors is practically the same for all signal-to-noise

ratios.
TYPICAL SUPER HETERODYNE RADAR RECEIVER
, — -
RF | F ENV COHERENT THRESHOLD
AMP DET E-’mﬁc\mron Fﬁ "
LO
j
1
MATHMATICAL MODEL OF RECEIVER
FROM F FLTER DETECTOR POSTDETECTION 1 /™
=1 (LNEAR OR SQUARE) INTEGRATOR THRESHOLD
v r y H
f=av )
or rav? y=LZn

FPigure 1: Radar Receiver Model

The multiple-pulse detection is used to improve the
detectability of the signal by achieving integration gain. The
noncoherent integration provides an integration gain even when
the signal has a random phase and is rapidly fluctuating, such
as Swerling case 2 and 4. By contrast, coherent integration

needs a nonfluctuating or slowly fluctuating signal with

predictable phase characteristics.




2. ASSUMPTIONS

The assumptions embodied in the M-S detection problems are
as follows:

¢ A received pulse train consisting of N samples of noise
or signal-plus-noise 1is available.

¢ The signal is imbedded in white Gaussian noise of known
spectral density of N,/2.

¢ The signal is of unknown phase type, where the RF phase
between pulses in the train are randomly distributed.

* The processing consists of a matched filter and square-
law envelope detector which operates on each pulse of the
train and a linear integration which conbines the n square-law
envelope detected pulse.

* The directivity pattern of the antenna is rectangular so
that the n return pulses resulting during the antenna's dwell
time on the target are unaffected by the antenna's radiation
pattern.

¢ The target's <cross section can be described by a chi-

squared distribution with 2k degree of freedom.

4

wlo, o) = =7

all>x

(ﬁao_)x-l e'(KO/—E) (3)

C. RADAR DETECTION PHILOSOPHY

Radar detection is complicated by the fact that the target

cross section 0 is a random variable fluctuating with time and




both noise and clutter. Extraction, or parameter estimation,
is likewise complicated by random fluctuations of the target
echo. For the radar detection case Neyman-Pearson criterion is
used which needs neither a priori probabilities nor cost
estimates. In radar terminology whose objective is to maximize
the probability of detection for a given probability of false
alarm. This objective can be accomplished by wusing a
likelihood ratio test. Specially, there exists some
nonnegative number 1n such that hypothesis H;, (i.e., target 1is
present) is chosen when

£yn(y)

Aly) = £

2T (4)

and hypothesis H, (no target present) is chosen otherwise.
There are two types of errors which can be made. If we say a
target 1s present when in fact it is not, an error of the
first kind is made (see Fig 2). That is, we choose H, given
that H, is true which is denoted as the probability of false
alarm. Similarly an error of the second kind is made when H,

is chosen and in fact H, is true which is probability of miss.




Actusl
HO H1

Dedclaration
Correct decision  |Missing target

HO No target present |Error of second
kind

False alarm Correct decision
H1

Error of first kind  |Target present

Figure 2: Error of detection

To optimally detect the signal with unknown phase,

consider the narrowband signal of duration T given by

s(t)=Aa(t)cos(w,c+0(t) +¢] (5)
=s;c08¢-ssind
where S;=Aa(t)cos(wt+0(t)], S;=Aa(t)sin[w,t+0(t)]. A is signal
amplitude, a(t) is an envelope function of duration T, 0(t) is
the signal phase modulation. Waveform r(t) is assumed to be
prefiltered by an ideal low-pass filter that is distortionless

within (-w.,w,) and zero outside the interval; therefore the

filter will not affect the band-limited input signal s(t) but

results in a band-limited statistical process. Under this




assumption the input waveform r(t) can be described by the

sampling theorem as
r,(t) =s,(t) + n/(¢t) 1=1,2,3,...,2f.T (6)

Where 2f£.7 is the number of samples, and t=i/2f..

The hypothesis testing can be described as:

5
L]
"

8 +n ( target present ) rors

ST
by
"

n ( target absent )

Then under each hypothesis the probability density functions

can be written as:

[ ]
(r,-8,)3 rf
) ;; 8y z; i
1 20} . _ 1 20}

T (yTmo )" (VZ%a,) "

The likelihood ratio Al(r) is given by

2.7

(r,-8,)?
expl- ) —L =1}
. 2f
A(I‘) = fn'n(t) - lim ;1 C'NO
2 g) ?7;, . 2f.T ,
o fenT {—121 i)
CXP3T N,

(9)
177, - 2
expl _Nojo (r(e)-s(e)]? de)

_1rT 2
expl Noforw.) dt}

- exp[”z%for""” de + .g_ofo’r(c)sm dt]

where E = IJ s*(t)dt is the energy of the signal. Substituting

Eq(5) into Eg(9) yield the following expression for the




likelihood ratio A(r |¢ )

= S EL2 (T 5,
A(r|p) = expl O [fo r(t)s;(t)delcosd
(10)

2 (7 -
= [f " r(t) s (t)dt])sing |

Let the signai-to-noise ratio ¢ =E/N, and

2

(T) =
YN

forz(c)s,(c) de
(11)
_ 2 T
YQ(T) mfo I(C)SQ(C) dat

using Eg(ll), Eq(l0) can be written as follows

A(r|d) = e 2 exp VP Ly (T) cosd - y,(T) sind]}

(12)

e % exp (V§ r(T)cos(d+a)}

where a=tan ' (y,/y;) . r(T) =y (T)+y; (T} ]1*'? is the envelope of the
radar signal out of a filter matched to the waveform (2/N,
y'’?)s(t), sampled at time t. Assume ¢ is a uniformly
distributed density function U(0 2n). Averaging with respect

to ¢ yields the averaging likelihood ratio as follows

A =n¥/2 1 n v¥r{Tcon(¢+a)
A(r)=e _ano e db
(13)

=e V21 [J¥r(T)]

where I,(y'’r(T)) is the modified Bessel function of the first

11




kind and order zero. Therefore the threshold test becomes

H,

1
I, /¥ £(1))]  e¥*A(x) (14)
Hy

where eY?A(r) is the operating threshold. The corresponding

receiver implementation is shown in Fig 3

matched
| - #[T
r(t) % to ()
meaiched ] [ THRESHOD
fiter L=a ()R THRESHOLD COMPARE
po i o

Pigure 3: Optimum detector for radar signal of unknown phase

D. OBJECTIVE
The Marcum-Swerling target model is the most commonly

used model to calculate radar range performance. The objective

of this thesis is to review the underlying theory of radar

detection for this model and then develop a MATLAB programs to

compute probability of detection and maximum detection range.




II. MODELS AND MATHEMATICAL METHODS

The procedure for the calculation of average probability
of detection P, for Marcum and Swerling cases is as follows:
1)Find the single pulse characteristic function, C,;(p)., by
transforming the single pulse probability density function
fon(y).
2)Find the N pulse characteristic function, C,(p)=[C,(p)]".
3)Average the N pulse characteristic function over the target
distribution to find the average of C,(p)( Culp)).
4)Transform C,(p) to find the average ensemble probability
density functien f£,,,(y) and £, (y) for the N pulse return.
5}Find probability of false alarm P,, by integrating f,(y)
from y, to infinity.
6)If P,, is given find y, by means of the mathematical
recursive method.
7)Find the average prcbability c¢f detection P;, by integrating
the density function of signal plus noise f.,,(y) from the

threshold y, to = .

A. MARCUM'S (NON-FLUCTUATING) STREADY-STATE TARGET MODEL
The non-fluctuating target model is applied to spherical
or nearly spherical objects, such as balloons, many

wavelengths in diameter. The target model, therefore, can bhe

13




represented by a constant-valued radar cross section.
The Rayleigh and Rician probability density function of
the envelope detected output for N pulses are given by

r

£o(r |Hy) = re™™ ;  r,20

-(el+y) (15)

——s.

£onlr |H) =rje 2 I(ry¥) ; r;20

where y=E/N, is the single pulse peak signal~to-noise ratio
for a steady target. Since the noise received in the 1ith
observation interval 1s assumed to be statistically
independent of the noise in every other observation interval,
and the signals are noncoherent between the different
observation interval, the initial phase ¢; in Eq(5) in the ith
interval is also statistically independent of ¢; for all i#j.

The likelihood ratio test in Eq (9) can be written as:

x(z):f1(11,1'2,...ersl,Sz...sN) _ X L(rylsy)
£, (r4]0) i1 Ly (r;[0)
- De v/, (r,/P) (16)
-1

N
e“"’V/zil.]lIo (r V)

From Eq(16), the test statistics is

H,
N 1
Y. InL (ryv) [ e*?A(r) (17)

1=l H
[




For small signal, the modified Bessel function I,(x) can be

approximated for x<1 as:

x?® X9

Iy(x) = 1+—v =+,
4 64 (18)
In Iix) = In(1¢2X2+ 200 ) a X2t F(x9)
0 4 64 T 4
Therefore Eq(l7) can be rearranged and modified as
N
rian’ (19)

I=1

where N 1is the operating threshold which is determined by
specifying the false alarm probability.

Marcum utilizes a square law detector law which allows the
signal-plus-noise probability density function to be expressed
directly in the signal-to-noise ratio Y. To simplify the

calculation, let

=

- Ii (20)
Y: —_— = ,
IR P

1=

!

which Y is compared to a suitably modified threshold Y,

To £find the probability density of Y, first the
probability density of f,.,(q;) 1is found by Jacobain
transformation f,, (r;) from Eq(1l5) into £,,,(q;) as follows:

q:4¥

£ L 4
£on(gy) =-£%Fl =e ¢ I, (J2Zq¥), q;20 (21)

15




Since random variable Y is the sum of N statistically
independent random variables ¢g;, by applying the relationship
between the sum random variable and the individual random
variable of the characteristic function, and the Campbell and

Foster tables of Fourier transforms ; the C,(p) is

N N - ipq
Cy(p) =_111th (p) = .111 e’ L.y (q;) dg;
ie jwid -

N . .
= _IIo . e?Pd g WV T (TTW) dq; (22)
o ~Ne/2 .
=2 — e éilep)
(L+p) ¥

From Campbell and Foster Tables of Fourier transforms pair
650.0, the probability density function of £,,,(Y) can be found

by taking the inverse transform of C,(p).

£,,(v) = (2X)YVE oovmz 1 (IREY), v:0 (23)
g+n w N-1

For small Y, the modified bessel function I, ;(Y) can be

approached as:

Yo 1+ Y: . y! +...] (24)

=2”’m! [ 22 (m+1) 23(m+1) (m+2)

Therefore the resulting normalized square-law detected
probability density function is

yN-1g-Y-Ny/2

—moT ¥ (25)

fenl¥) =

16




for noise only the probability of density function f£,(Y¥) is

- Y¥le™ 26
£ () N T Y20 (26)

A computer simulation of f, (¥) at the square law detector

cutput is given in Figure 4:

0.14 : : — —
0.12k

0.1+
0.08
0.06

0.04

probability of density function

0.02

Mol .

O 10 20 30 40 S0 60 70

random variable
Figure 4: Simulation of noise at suare law detector output

After square-law detection, the normalized square-law
detected variate (Y) is summed over the N-pulses in the pulse
train and then compared against a normalized threshold voltage
(ys) to determii.z the presence or absence of a target return.

The probability of false alarm can be obtained by




integrating from the threshold (y,) to infinity

- (tXTle” (27)
Pra fyb VYRR

The incomplete Pearson gamma functicn which is very useful

for describing M-S model is defined as:

I(u,p) =f0\/ru(P~1)) Egm (28)

And in term of the Pearson's incomplete gamma function, EQ(27)
is

Piy(N,Y,) = 1-I[Y,/NY?, (N-1)] (29)
where u=(y,/N'?) and P = N-1.

Eg(29) can be successively integrated by parts and given

as:
N'l _yb
Yp € (N-1) , (N-1) (N-2)
P, (N, Y,) = 1 + ...
e ) Yy? ]
(30)
R oyfe™
K=0 K

The above equation also can be approximated £for N>>1 by

letting
N-1_ (N-1) (N-2) 1
1+ +. . ]4——— N>l
(r==e Y,? ]'l_N-l > (31)
Yb

and by applying Stirling's approximation
v =y )" (32)
The probability of false alarm in Eq(30) can be approximated

18




as

Yb N e‘yb‘N
Ny &S (33)
Py 2x \%) voer M

The probability of detection for steady-target (case 5)
can be obtain by integrating f£,,,(Y) from Yy, to e and is given

by

P, (Y) = fy' £,.,(Y) dY

(34)
< 1-[P( 2Ty Wz grmag | (JINFY) Y20
- 0 W N-1
The Q function is defined as
- N-1 2442
o,,(a,p)=f° V()" exp(-(£2X)]) I, (avidv (35)

For N pulses the probability of detection P, can be

written in terms of Q function as follows:

Py (y) =0(VZFY, J2T;) (36)

Another approximation can be made by using Gram-Charlier
series expansion ( Appendix A ) and noting that Gaussian

family is closed under linear operation.

., d
m = (-3 ZEBL < w2
d:c -
m, = (-3)?2 d;(f) [peo = N2(1+y/2)2¢N(1+y) (37)

where m; is the ith moment of the distribution of Y and o is




the variance of V.

?) 1 e ly-Nu-y/2))?
|
V2ENTIFY)  2eN(1+y)

£ (Y)a_Lt_gt-r-mian
JIRN

Loun!

(38)

Therefore the probability of false alarm can be represented

as:

(Y- 3 -2?

S o p =z Y,-N
Ps, -f-—‘—]-'—e Wy = f—Le 2 dz where Zz=—2%
VIR syw V2T VR (39)
VR
Y -N
Ly
VN
Y, can be solved from the above equaticn
Yy« yRG2(P,,) N (4¢0)
The probability of detection can be obtained as
Y,-N(1+¥/2
pg-d»[(" ( /))] (41)

1/Nz j.-r‘Pi

B. SWERLING'S (FLUCTUATING) TARGET MODELS

1. SWERLING CASES 1 AND 2

The radar cross section of a target (@) is the area of a
hypothetical reflector ~hat scatters all radar beam energy it
in~ercepts omnidirectionally, such that it produces an echo at

the radar antenna equal to that energy actually received from

the target; that is




- (power received by antenna)

(incident power density per4n rad)

2
=lim 4nR2' A
Fam E- I 2

(42)

Where E, is the electric field incident on the target, E, is

the reflected field as measured at the radar receiver antenna,

and R is the distance from the target to the radar receiver

ancenna.

The total elecrric field received from a complex target

can be expressed as a summation, nanely,

74nd

£l Y Bl ex (215 |
and therefore the radar cross section is

ken 34nd

o=|} /1o, exp(=

K=1

)12

Ken

'lzﬂ_T [cos (=

» sin( 4’;d'<)] |2

wirerc

O iz the crossing section ¢f individual
elements,

n the number of scattering elements,

d, the range of the Kth element,and

A the wavelength.

(43)

(44)

scattering

In order tc relate the proceeding to a real target two

assumpticns shall be made:




(1) On a short term basis 4nd,/A is a random
variable which can take on any value from 0 te 2a with equal
prcbability.

{2) The individual scattering elements have equal
radar cross sections, that is, ok=a,.

Therefore the random variables can be expressed as the x
component (G,) ‘*’?'cos (4nd,/A) and the y component (6,)!?
cos(d4nd,/A), the problem of determining the probability
density function of ¢ is 1identical to the problem of
determining the distance moved from an origin in a two
dimension walk problem of n steps, where the length of each
step is (0,)!? and the direction of each step is perfectly
random.

The probability of having a component {(x,y) aftexr n
steps where n is a comparativity large number is given by

exp [-(x%+y*) /na,)

wix,y) dx dy = s
[

dx dy (45)

Converting from rectangular coordinates to polar coordinates

yields

w(R,8) dR 08 = =X exp (- (R?) /ne,] dR d9 (46)
nno,

The marginal distribution of R, obtained by integrating the

preceeding with respect to 0, is

wip) dR = %exp[-(m)/naol dR (47)

0
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Now,since O=R’sx’+y’ and do=2R dR Eq. (47) becomes

w(g) = exp[;z/”%] for 0> 0 (48)
[+]

w(C)=0 for ©50. This demonstrates that the probability
density function of the c¢ross section is exponentially
distributed with an average cross section 8=n¢,. Thus, the
average total echoing area is the sum of the individual

echoing areas of the individual elements.

a. Casa 1 Scan-to-scan fluctuations of exponential
densgity function.

The scan-to-scan fluctuations of ail exponential nature can
be applied to targets such as jet aircraft when a radar having
a fairly high pulse repetition rate and scan rate is employed.

For case 1, Swerling derived the probability of detection
by initially defining a target model where the received signal

power is exponentially distributed, namely,

w(x, X)

ﬂE_l;.[X_/E for x> 0

=0 for x <0

(49)

where x = input signal-to-noise ratio.
X = average of x over all targets fluctuations.
The -haracteristic equation for the probability density
function resulting from the integration of N pulse returns

from an expcnential fluctuating target, when there is complete
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correlation between pulses, is derived from the non-
fluctuating case (Swerling case S5) characteristic function as

follows:

. (%ﬁ)
-Nx +]
Cy=1G)¥=E2

-Nx( £
— - p+l (50)
Cup) = [ wix, D e—(p;l-p,—

1
{p*1) ¥ [1+p(1+NX)]

For noise only, the characteristic equation is the same as
for case 5.
1
Cpy= ——o (51)
¥ (1ep) ¥
The probability density function f,(y) obtained by using
Campbell and Foster 431, p.44, is the same as the probability

density function of the nonfluctuating case. 1i,e,

N-1 e~y

For signal plus noise, the probability density function

f,.,(Y) was obtained by using Campbell and Foster pair 581.7,

p.64. For N>1, the density function f,,,(Y) is




1

£ (v =[" jzmpy g
an( f-- (p+1)~-1 [1+p(l+Nm1 e D
=1 ewaem P - (P(N-1) -T'(N-1, DXy
Nx I (N-1) (X)) 1TNX
Tenx
v Tin-1, DX (53)
=L eviem (1+-1) (1- 1NK )
NX I'(N-1)

, N-2
e Y/ (1+ND) (14-_1__) I(——d—— ,N-2)

Nx 1+-L /AT
Nx

U

>z<||"' ﬁl*‘

where I'(v,z) i, the incomplete gamma function and I(u,p)is the
incomplete Pearson gamma function.
For N=1, the probability density function can be obtained

from Campbell and Foster pair 438, p.45 as

£.. (Y)zel"V1*R) /(1 +X) (54)

an
therefore the probability of detection can be obtained by
integrating Eq(54) from O to Y, and the result is given by

Swerling as:

Y
l-p":foh £pop(y) dveI[——L— N-2]-(1+NX) £(Y,) (55)

From above, P,can be obtained as

Y . 1 N2
=1-T 2, (N-2)) v (1+—==
Pomi-Tl—oos Tri1esm)
¥ (56)
- b

I( - , N-2) g1V (148
[1+(1/Nx)yN-1]
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Another approximation can be made by inspecting Eq(56) and
let Nx»>1 and P,<<1 such that the Pearson incomplete gamma
functions are close to unity. Then EgQ(56) can be rewritten

approximately as

-Yb

)N © 1+Nx/2 Nx>1 (57)

Pfa<l

PD-(]_«I»

Nx/2

Taking the logarithm of Eg{57) and using a series expansion of

each term,

InPe (N-1) In(1+-1) -____YL_l_
Nx (N)?) (l“"—_)
Nx
. (N-1) [ L ] (58)

l T — -1ll
{N%) (Nx/2)% 3 (Nx/2)°

1 1 1 - )
pl — — L ce)
NxX/2 (Nx/2)% (Nx/2)3

Taking only the first terms and using Eq(40) yields

1n pD--—z—_ (Y,-N+1)
x (59)
o2 [yR ¢ (P,,) +1]
Nx

b. Case 2 Pulse-to-pulse fluctuations of exponential
dengity function.

Pulse-to-pulse fluctuations of an exponential nature apply

to targets such as propeller-driven aircraft (if the

propellers contribute a significant portions of the echo

area), to targets where small changes in orientation would




establish significant changes in echoing area (such as long
thin subjected to a high-frequency signal), or to targets
viewed by radars with sufficiently low repetition rates.

For case two, the received signal return still belongs to
exponential distribution. For this case the signal 1is
completely decorrelated (pulse to pulse fluctuations exist),
the probability density function for noise only ({(signal-to-
noise ratio equals to () still the same with Case 1. The
probability of cdensity function of signal plus noise for case
2 can be obtained with the same procedures, but have the pulse
to pulse integration. The characteristic egquation for the
single pulse 1is obtained by 1letting the characteristic
equation of case 1 to be N=1

- ]

C,(p) = —————— (60)
VB TR )

For N pulses which is completely decorrelated (independent),
the characteristic equation is just the Nth power of single
pulse

1 ]N

REARRCE SR vetees )

(61)

Therefore the corresponding probability of density

function obtained by using Campbell and Foster “Tables of

Fourier transforms" pair 431, p.44 yield:




- (N-1) g (-¥/(1+3))
() = [ [——2—1Yetmray = L= (62)
= 1+p(1+X) (1+x) "(N-1)
The probability of detection can be expressed as:
p,=1-[ f
o = 1-f, fanly) dy
_ 1 v y N1 0w _dy
= 1- e —_—
(N'l)!fo 1+Xx 1+X (63)
Y
= 1-T[—=2—, (N-1)]
(1+X) VN

Another approximation can be made by applying that the
Gaussian family is closed under linear operation and by using

Gram-Charlier series expansion (Appendix A) so that

= ., dCyip) _
m = (-7) ——dp—'lp.o = N(1+X) .
d’Cy(p) (64)
= -7)2 Y = 2
m, = (=7) ey [p-o = N(N+1) (1+X)2.
Variance : 6® = my-mi=N(1+X)?2
The approximate probability density function then is
-[Y-N(1+3))?
Fou(¥) s—L2 g MW7
VZEN(1+X) (65)
£lY) = 1 _o(-r-m¥2N
T

Therefore the probability of detection and false alarm can
be obtained by integrating from the threshold level y, to =

and are represented as:
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D=¢[(YD-N(1+E)] ; P“.:MM_] (66)

VN (1 +X) VN

2. SWERLING'S CASE 3 AND 4

For Swerling's case 3 and case 4, the radar cross section
can be described by chi-square distributions with four degrees
of freedom. The density function is commonly associated with

tabilized missile tankage and can be expressed as:

w(x, %) = 2X 7% 0 (67)
x°

a. case 3 Scan-to-scan fluctuations with a chi-square
density function with four degrees of freedom.

The characteristic equation for case 3 which represents

the condition of complete correlation (scan-to-scan, no pulse-

to-pulse fluctuation) is given by

-px(—£_)
pos -~ 4Ax -(3X%) e Aox pe1 (p+1)2'~
C(p) = —-—= e x = dx =
f.. P (p*l)" ll*p(]_“?)]; (Ga)

The characteristic equation and the probability of density

function for noise only remain the same as in case 1 and 2

= 1

Cy(D) = ———

v (p+1) ¥ (69)
- (" 1 _jempyg, - YVl e

£a(y) f—- (p+1) ¥ € ap (N-1)!

For signal plus noise the probability of density function
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can be expressed as:

Y - a-N
£,.,(y) = f_ (p+1) - el3*¥r gp
T (1+p(1+40))

(70)
a yN-l e‘)’ FI2.N _L—]
(N-1)t [(1+(Nx/2)1° (2N R

where the density function comes from Fourier transform pair
581.1 in the Campbell and Foster tables given as

1 1 &-1 ,-(po)Y/2
- Y e-'f X
(s+p)®**V(s+a)® TI'(2a) (p-0)® (71)

M, a2 (p-0) Y], ¥<0O

where

nln

He

1
M, ,(2) =2 e Fl(p-v*%,2u+l;2) (72)

Eq(72) can be simplified using the relationships for the

confluent hypergeometric function, that is

F,(2,N;2) = (2+2-N)F,(1,N; Z) +N-1

z (73)

F,(1,N;2) e? ZN1(N-1)! I[ , N-2]

Swerling wuses two identities relating to confluent
hypergeometric functions in order to expand the proceeding
into more familiar Pearson's form of the incomplete gamma
function, I(u,p) which is defined in Eq (30), thus Egq (73)

becomes
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£ (y)=lit(2/Nx) 1"y o y [ N-2] e ~y/1s1/2))
o [1+(NX/2)]3 (1+2/ (NX) )yN-1
~AN-2) [3e 2/ 1T 1 Y N-2]  (74)
(1+(NX/2)])? (1+(2/NX) ) yN-1
e v/ (1+Nx) y¥ler

(1+(Nx/2)] (N-1)!

The ©probability of detection can be obtained by
integrating the density function from the threshold Y, to

as:

N-2 . -Yp N-2 m - -2Yp
P,= Yo '€ 2Y + e'yb_y_b-r(@)wze NX2
(N-2)! Nx+2 &% m! Nx

2Y, » (75)
2 27 N-2 -2y | ._)
(1-202) , 2 ) (1-F e T _2:K )] ; N22
Nx Nx+2 F— m!

b. case 4 pulse-to-pulse fluctvs.ions with a chi-
square density function with four degrees of
freedom

With no correlation, the characteristic equation for a

single hit is obtained by letting N=1 in Eq(52)

Cp) = P ___
[1+p(1+%‘)]

(76)

The characteristic equation for the sum of N pulse can be

obtained by the Nth power of a single hit
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— -— N
C.(p)=IC.(p) 1Y = (1+p) (77)
¥ ' 1+p(1+%/2) 1"

The inverse Fourier transform of above equation 1is
obtained from Campbell and Foster transform Pair 581.1,p.64.
this yields the following expression for the probability of

density function in the condition of signal plus noise

cegx  (E (1+p) ¥
fc (}’) = —_ € x
gen "Yb? [l+p(l+}—(/2)]2N
8
oy e_u-;/z (N-1) ! F. (-N, N; ~-Xx/2 ) )
(1+%) 2% R '1+:‘c/2y

The confluent hypergeometric function F,(-N,N;a) can be

expanded as:

N N ale1e N @ (=N} (=N+1) a?_ (-N) (~N+1) (-N+2) a°,
Fx( NINIa) I*T-I!—’ N(N’l) ﬂ N(N#l) (N+2) 3! ------- m)

L (-1 F(N/(N-K) ) af

m [(N+K-1)1/(N-1) 1] KI

From Eg(78) and Eq(79), the density function f,.,(Y) can be

rewritten as

£ = Y¥ie TEEANI (%2 K y* (80)
o (1+%/2)%" &1 1+x/2 [ (N+K-1)! (N-K}! K!]

The probability of detection is obtained by integrating Eq(80)
from the desired threshold Y, to «. From the definition of

incomplete gamma function, the probability of detection can be
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written as:

PD - f. fs*n(y) dy
Y1,

(81)

Yb
v o= Il
1- N! (ic)" (1+x/2) J/N+K
(i+Xx/2) V&3 2 K! (N-K)!

, N+K-1]

With Eq(40), the probability of detection can be approximated

as:

N+K-1])

I[\/Nd)‘l(p&)ﬂq
1o Ny~ T ¥ (1+3/2) /R
(1+9/2) V&4 " 2 K! (N-K)!

(82)

C. SEARCH RADAR DETECTION RANGE CALCULATION

The Marcum-Swerling theory represented by extensive sets
of curves from the computer programs can be used to determine
the detection range of a practical radar by introducing
detection loss and others parameters. There are many types of
detection losses which have been identified so far, and when
these are considered, reasonable predictions of radar
performance can be obtained.

The radar's detection range can be determined by applying
the desired signal-to-noise ratio determined from the Marcum-

Swerling theory and the calculated detection loss, as given by
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P.G.G,A%a
(4% )3KTBF,L( _f-,)

R =1 14 (m) (83)

R... = The maximum detection range in meters
P,

. = Peak transmitter power in Watts

>
L}

Wavelength in meters

G.. = Transmitter and receiver antenna power gains

0 = Average radar cross section in square meters

k = Boltzmann's constant= 1.38 x 10°% J/deg.

T = Effective system input noise temperature in degrees
Kelvin (° K)

B = Receiver bandwidth in Hertz.

L = Detection system power loss factor

F,= The receiver noise figure

S/N= The smallest output signal-to-noise ratio

When n pulse are integrated previous equation can be

written as

P.G,G A%*on
(am) *KTBF,L( %) \

Rogy= [ ¥4 (m) (84)
where the parameters are the same as that of Eqg (83) except
that (S/N), is the signal-to-noise ratio of one of the n

pulses that are integrated to produce the required probability

of detection for a specified probability of false alarm.
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IIXI. SOFTWARE DEVELOPMENT

This chapter describes the development of MATLAB programs
for the efficient and accurate conputation of probability of
detection based on Marcum and Swerling theory of radar
detection. The MATLAB source code is given in Appendix B, and
complete programs are available from Professor G.S. Gill, Code

EC/Gl, Naval Postgraduate School, Montexrey, CA 93943.

A. PROGRAM STRUCTURE

The overall program structure is shown in Figure (5). The
structure is that of a main menu program which calls various
submenu programs (mscurve.m number.m number.m ) as required.
The submenu programs, when called, will then display the
purpose of the subprograms. When called, the subprograms will
call the function programs to do the actual computation. It is
possible to exit the process from either the main program or
from the subprograms or the function programs. The advantage
of this format is that if the user wants to change one of the
subprograms or function programs and wants to add other
programs, this system can accommodate it. For each subprogram

there is an error detect prevention and data entry double

check function to inform the user and restart the process.




{ MAIN MEW )
M8 .M
1}
SUBMENU.M SUBMENU | BUBME
( MSGJRVEMl ¢ NUMBER. RMENU.
| | ]
[ SUBPROGRAM | [ SUBPROGRAM | [ BUBPROGRAM |
RANGE1I.M
RADAR.M POINT.M RANGEJI.M

RABAR1.M RADTHRE.M RANGE4.M
MEYER.M DETECT.M

[ —

{ FUNCTION PROGRAMS |

SWERL1.M
SWERL2.M
SWEALIM
SWERUM
SWERLS.M

|

{ FUNCTION PROGRAMS |

THREBH.M

THRESHM.M
PROB.M
MARCUM.M

Figure S5: Program structure
1. Usger's guide and instruction
To use these programs, the following MATLAB files have
to be copied to the user subdirectory. A brief explanation of
each is also given.
- ems.m is the main menu program and gives brief descriptions of
the M-S model and displays the main menu.
emscurve.m ,rmenu.m, and number.m are the submenu programs.

These give the purpose of the programs when called.
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eradar.m, radral.m, meyer.m, are the subprogram used to
integrate swerll.m, swerl2.m, swrl3.m, swerl4d.m, swerlS.m
function programs to calculate and plot the curves p,vs S/N,
Pa VS P and py vs N, respectively.
erangel.m, range3.m, ranged.m, are the subprograms responsible
for integrating and calculating the detection range. The user
inputs the specified detection loss from detect.m. The
rangel.m, range3.m, ranged4.m, will load the data from detect.m
and calculate automatically and display the detection curves
on the screen.
epoint.m radthre.m, are the subprograms responsible for
calculating and displaying the numerical results from the
function program radpoint.m and marcum.m, respectively.
eswerll, swerl2, swerl3, swerld, swerlS5, prob.m, thresh.m,
threshm.m, bound.m, radpoint.m, noise.m, signal.m, are all
function programs responsible for calculating the data from
the subprogram and then return the numerical value.

A 386 or 486 personal computer is suggested for greater
speed. To start the program type ms and press [enter] at the

MATLAB prompt.

4. Printing graphical outputs
Graphics output from all programs will be stored as meta
files automatically. The operator can print out the desired

graphics from MATLAB by typing lgpp <filename> [enter). Once
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the user restarts the programs, the previous meta files will

be deleted automatically.

3. Programs options

Once the ms.m command is given, the first screen seen by

the user is as shown in Figure 6.

YTHIS PROGRAM IS DESIGNED TO ALLOW THE STUDENT TO
$VARY THE PARAMETERS OF THE VARIOUS SWERLING CASES
SIN ORDER TO STUDY THE EFFECTS. :

CASE #: DESCRIPT1ON

1. Returned pulses are of a constant amplitude
over one scan, but are uncorrelated from:
scan to scan.

2. Returned pulses are uncorrelated from pulse
to pulse and correlated from scan to scan.

3. Returned pulses are of a constant amplitudae
over one scan, but are uncorrelated from scan
to scan.

4. Returned pulses are uncorrelated from pulse to
pulse and correlated from scan to scan.

5. The static case with constant S/N and pulse

3
L
4
]
|
L
%
L 4
L
|
s
|
%
L ¢
L
] anmplitude

rigure 6: Main menu descriptions

This screen gives a brief description of the five target

models. After pressing the "enter' Key, the user will see a

second screen as shown at Figure 7.
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----- MAIN MENU -----
1) THE M-S CURVES

2) NUMERICAL DETECTION PROBABILITY CALCULATION
3) RANGE DETECTION CURVES

Select a menu number:

Figure 7: Main menu
At this point the operator has different choices to make
depending upon what he/she wants to do. Once the operator
chooses one of the items, the main menu program will transfer

to the selected submenu in Figure 8.

~~<== SUB MENU ~~- [THE M-S CURVES ANALYSIS) =-==---

l) PROBABILITY OF DETECTION vs. S/N
2) PROBABILITY OF DETECTION s. Pfa
3) FROBABIl.ITY OF DETECTION vs. N
4) COMPARSION OF M-S CURVES

Selaect a menu number:

Pigure 8: Submsnu Screen

From the submenu the user will have another set of
choices. He can choose the item he wants to study. After he
chooses one of the items, the following selected screen will
be seen in Figure 9, Figure 10, Figure 11 and Figure 12. The

user can follow the instructions on the screen to key in the
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arguments he wants to study. Then a data input screen seen at
Figure 13 will display the data for double check. After the
completion of above procedure, a selected graphic output will
appear on the screen as in Figure 14. After the graphics
display, the user can press 'enter' to get the next screen as
shown in Figure 15. At this point, the user can either choose
to go back to the main menu or exit to print out the graphic
display. A selected second submenu and third submenu are shown
in Figure 16 and Figure 17; users can follow the same

procedure to choose the items they want to study.

—
SRR AR A AR AR h R A R R AN R AR AR AR NN A AR AR AR AARAAR AR AR AN R A A AN R AN
% THIS PROGRAM RETURNS THE PLOTS FOR THE NUMBER

% OF PULSES AND SWERLING CASE SPECIFIED IN THE PARAMETERS.
% THE PLOTS WILL BE STORED IN METAFILES UNDER THE NAME

$ "RADAR.MET" FOR AN EASY PRINT OUT.

1

t (A) the swerling case number has to be determined now
%***************************ﬁ**-k***i***i****-h**i*t*i****t*

echo off

Enter the case number you want to study

Figure 9: Subprogram Descriptions Screen (a)

RRRANRRARRAANRARRRRRRRRARRAARNRRAANRAAR AR ARA AR AR b A hdhd

(B) . The number of radar pulses the program is to

integrate needs to be an integer between 1 and 600
AARR RN R AR AR R AN T AR R AR N R AR AR AR AR R AR RRRRRRRARARR AR AR AR A AN

cho off

Number of Pulses to be inteyrated is n = 10

Pigure 10: Subprogram Descriptioas Screen (b)
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tt*t*tititi'tti*tt*ttt*t*t&**i*i****iiit*tti**tr*'.tiﬁi*iti*ﬁi*t*tﬁtti*t
(C). The probability of false alarm rate curves (pfa) to be plotted
must now be determined. Each choice of a pfa will result in a different
curve being plotted on the graph. You need to choose the following;

1. The smallest pfa curve to be plotted, gfamin = ?
2. The largest pfa curve to be plotted, pfamax = ?
3. The step size between pfamin aand pfamax, pfastep = ?

If you wish to plot only one curve then enter the same value for
pfarin and pfamax.

The suggested default step size to use is that of PFASTEP = 10,
which is quite sufficient. It is suggested that pfamin and pfamax

be powers of 10 as that is the normal choice.
tﬁttﬁ**itttit*iit*tttiit’iﬁiti*t*ﬁ*ﬁtﬁﬁtii'tﬁi*iii****ﬁ**i**iii*i.ittttx

Figure 11: Subprogram Deacriptions Screen (c)

[ ZXZXXZA2 AR R2A2 222 R 2222222222 RR22 2222 222 22 0 2 2222222 2XX22)

The signal to noise ratio (S/N) in dB for which you wish to
plot needs to be determnined. The choices you neead ~
to maka are;
1. The smallest S/N point to be plotted, sdbmin = ?
2. The largest S/N point to be plottad, sdbmax = ?
Remember that S/N must be entered in dB.

3. The stepsize betwean sdbmin and sdbmax = ?
[ 222 2XXRRZ2ZEARZZELX AR 2A S22 2222 2 RN 2 2 2 2O 4

Pigure 12: Subprogram Descriptions Screen (4)
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% ---------- D AP WD D G S P W GE Gh R e S WP Wy G = D G WS D G» R R R D P SR G S S G G T I S Ss Gmp S SR
echo off

The case number you is 1.00

The number of pulses you choice are 1.00

The max false alarm probability you choice is 1.00e-12
The min false alarm probability you choice arel.00e-12
The pfa stepsize is 10.00

The max signhal-to-noise ratio you choice is 10.00

The min signal-to-noise ratio -10.00

The S/N stepsize is 1.00
LSS U VUSRS QU S

$IF THE PARAMETERS ARE CORRECT PRESS 1
$IF THE PARAMETERS ARE NOT CORRECT PRESS 2

100 .
n=10
ggl Pf2 = 1e-0 -
Eogof - - 4
2
g 20F -
g
_S 60} i
J:
S 501 d
°
“6 40" - -
2>
% 30>- -
£
ﬂ-‘. 20' T
10+
0 . .
-10 0 10 20 30

(S/N)1, signal-to-noise ratio, DB

Pigure 1l4: Selected Rasult
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If you want to go to the same submenu ENTER CHOICE =

or

If you want to go to the main menu ENTER CHOICE = 2

or

To exit this whole program PRESS RETURN

Pigure 15: Selected menu

~ew== SUB MENU ([ NUMERICAL CALCULATION] ==~==-

1) CALCULATION OF DETECTION PROBABILITY
2) CALCULATION OF THRESHOLD LEVEL

Pigure 16: Selacted seccnd menu

SUB MENU == (THE DETECTION RANGE ANALYSIS) -=w=-

1) RANGE DETECTION CURVES WITH DIFFERENT PROBABILITY OF FALSE ALARM
2) RANGE DETECTION CURVES CCOMPARSION

3) RANGE DETECTION CURVES USE THE DETECABILITY FACTOR

Pigure 17: Selected third menu




B. Algorithms for M-S models
The function programs in Figure & are based on the Marcum
and Swerling detection theory.
1. PFunction program algorithms
The function programs can be executed independently as
a normal MATLAB function. The input arguments and output data
are listed in Table [1) at the end of this chapter. All these
programs were implemented with the help feature of the MATLAB
environment. Typing “help < name of the function >" will
explain how to use them independently.
a. Threshold computation
The detection programs start with the calculation of

threshold y, by applying the equation (30) in Chapter z.

Y W Iy
Pfazpfa(N: Yb) =1'I(7N1N'1) = > —K_!e b (85)

The false-alarm probability can be represented as a
function of N and y,. To compute probability of detection for
all the five cases Y, is required for a given pg .

Since Eq(85) is a finite power series, in order to find Y,
for given P,,, a recursive commutation method has to be used

rewriting EQ(85)
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= Yoo RER
- - - - ~Yp
Py (N, Yb)';w: T!e b=P¢, (N-1, Yb)*‘me

=P, (N-1,Y,) +L(N-1)

d Y: Y, Yg’ -Y,
Psy (N+1,Y,) =§0 —k—!e° P=Pgy (N, ¥p) +—2e ™™

=P, (N, ¥,) +L ()
Y
=P,, (N, Y,) +L(N-1) -ﬁb

From Eq (86) and (87)

= -3 Yb (88)
L(n)=L(N .L)W

For a single hit (N=1) the false alarm probability and the

relation with the following term (N=2) are

P (1,7,)=e® L(1)=y,e™ (89)

Therefore this relation allow each term of the expansion
to be based on the value of the proceeding term, therefore an
algorithm can be formed to compute the values of the detection
threshold y, and the number of integrated pulses N.

The first procedure employed in the algorithm is to define
an empirical threshold level Y, then compute P(N,y;). On the
basis of this empirically determined value y,, an empirical

suggested Y, is given by




Y,=N-yR+2.3yL(JL+/R-1), where L=-logP,, (90)

This value is used as the starting point to compute
P(N,y,) then compare it against the desired value of P, and
the difference between Y, and Y,.;. This value of correction ay
can be calculated by using Newton-Raphson method by noting hat
rlpn(N3YM

Pe,

e vyl (N-1)
Pfa (Nl YN)

1
Yy =Yy*

The procedure is repeated until the correction magnitude
aAy/(ay+y) is 1indicated that Y, is within a sufficient
accuracy. A computer independent algocrithm notation is given
on Figure 18. In Figure 18, the arrow implies a specification.
The normal execution of statements is carried out line by
line, starting at the top, but a branch may be designated by
an arrow which results from the execution of a statement. A
conditional branch is denoted by a colon statement, and the
branch is executed if the comparison condition specified on
the arrow is satisfied. Otherwise, the next statement in the
sequence is executed. Notice in figure 18 that the program is
terminated when the value ay/(ay+y) is 1less or equal to €.
The value of € can be assigned to be 10 or 10°'*. This

accuracy should be sufficient for application.




L = -log,,(p,,)
Yo = n--/n+2.3/L(y/L+/n-1)
y =y,
T Ym = exp(-y)
Yms e Ym
M -0
- M+l

M

= N ‘M
Ym = Ymey/M
Yms e Yms+¥Ym
P = Yms
AY

= (p/¥Ym) *1n(P/P,,)

y = Y+aY
...._ée . lay]
Y
- - Exit Y,

FPigure 18: Algorithmic Program for Detaction
Thresholds, y,

The MATLAB function for executing this process is named
prob.m and thresh.m respectively. In Figure 18 ¢ is the
smallest acceptable tolerance value. Ay/ (ay+y) is compared
with €, and when it is less than or equal to &, the

computation will stop and return the value of false alarm

probability. In thresh.m the smallest tolerance value was set
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to be 10°%, this value is sufficient for desired accuracy.
This recursive method will be used in all Swerling cases

to find the threshold level y,.

b. Swerling case 1 algorithm
Following equation is used to compute probability of

detection for case 1.

-Yb

Y - Y Y
Bp=1-I[—b, (N-2)]+(1+2)" I( b ,N-2) e T
’ VN1 Nx (1+ (1/N%) yN-1]
. 1, ¥ Y, —_
=Pta(N-1rYb) (1+—) [1‘P“(N“1, )] e (1+Nx)
Nx 1+ 1
N%
(92)

It is obvious to see that for N=1 the detection probability is
e "/ 1*¥x) The algorithm in computer independent notation which
uses equation (92} to compute P,, is shown on Figure 19. Notice
in Figure 18 that the detection threshold (Y,) is independent
of the target fluctuation characteristics so that the
algorithm given in Figure 18 is used to determine Y, for all
target types. A MATLAB source code to compute probability of

detection of case 1 targets is given in Appendix B. The name

of this file is swerll.m,
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Enter Y, ,N,X

XN N *X

_ Y - Yy

= L
A «— 0

~— YM EXP (-Y)

YMS ¢ ™
M o 0
M - M+ 1

= N - 1 M
™ - ™™ ¢ Y/M
YMS YMS + YM

e P, «— YMS
1l A
A &« 1
P, - P2
Y — . Y/(1 +1/Xy)
— A, . (1 +1/%X,)*?
A, « EXP (-YD/ (1 + X,))
P, «~ Al * A, o (1 - P,)
) 4 « P, + Py ~cocerenn-a- > Exit pp,
—————p-P « EXP [-Yb/(x.n + 1)] --------- > Exit P,

Figure 19: Algorithmic Program for Swerling 1 Target,P;

c. Swerliny case 2 algorithm

Eq(63) can be modified as:
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%
VE{(1+X)
Yb

*FPea (N 3%

PD,=1-I( ,N-1)

(93)

A computer independent algorithm to implement the above

equation is shown in Figure 20.

Enter Y, .N

Y e« ¥
X (1 +N * X)
X, &  Y/X
™ ~  exp(-X,)
YMS « YM
M « 0
«— M+ 1
=N M
VY e Xo*YM/M
— YMS YMS + YM
e— P, ~ XMS -------- > Exit P,

Figure 30: Algorithmic Program for Swerling 2 Target,P,,




d. Swerling cace 3 algorithm
From Eq(75), the equation for probability of detection for

case 3 1s as follows:

-;x&_ (1+ (A;x) ¥)
- for N=1
(],+£.‘)2
2
Yy 2e 2y, Nx+2 -2 == (94)
= —_ *P!‘(N-ll Yb)"'( ) ew’z
(N-2) 1 Nx+2 NX

_2(N-2), 2Y,

(1 — —
Nx Nx+2

- o, YNx
) [1-Dpg, (N l'_N§+2)]' N22

An algorithm for above equation is presented in computer

independent notation in Figure 21.
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Enter Y, ,N.X

XN
- Y -

p—— N
A -
™
™S ¢
M -
M -
— N-1
M -
YMS
nad 7N

~ 1
A -
Pl -
Y -
AL
A2 &
A) -
P) -

B

=
L -

C
L -

20
[C -
B -
- P4 -
| 4 -
h—— ~
i | -
P -

N*X
Yo

P2

Y (1 +2/%X)
(1« 2/%X,)"?
EXP  (=2Y,/ (%y*2))

L =2 (N-2)/(Xy * 2Y,/(Xq &« 2)
AL * A2 * A) * (1 - P2)

1

N

N - 2

L

L-1

L

(C*L)

c

2Y,"' @ /B (X, +2)

Pl ¢« P2 ¢+ P} cvcccamne> Exit
EXP -2Yb/ (XNe+2)

Z XN Yb/(XN+2)?

G (1 & M) «eccaccecarExit P,

et

Figure 21: Algorithmic

program for Swerling 3 Tazget, P,
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e. Swerling case ¢ algorithm
Swerling case 4 computer program modified expression can be
obtained by applying the power series in Eq (30) into EQ(81)

as

Tk Y
¥ 5 [1-P(N+k, 1+x/2)]

N
P, =i~
5" (1&/2)";0 kI (N-K) 1
(—X _)a
1e X0 (N x
2 z 2
Ml g KI(N-K) !

P2 RTN-BT)
Y L
Ny«
N (=)

m, K=0 K! (N.K) !

[}
1B

)

Nx
N! 2 1 .
5 KU{N-K)! ( 14Nx/2 )E( 1+Nx7§)~x]

Y
N, —Y
1+Nx/2)+§ e

&-N Foladd
- NI 2

1

I W1 Tz Tz )
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with this expression the detection probability computation for
this case therefore can be simplified according to equation
(95) and avoid the computation of infinite power series. A

computer independent algorithm is at Figure 22.

Enter Y, N,X

X

0

(2/(Xy *+2))"
Yy

2Y/ (X + 2)

-
-
-
-
—
-
-
-

YMS

MK

YM o B/M

SUM + YM (1-MKS)

X, © MK ¢ (2N=-M)/2(M-N+1)
MKS + MK

TTT1T1T1T1T11

M

Pigure 22: Algorithmic program for Swerling 4 Tazrget., Dn,




f£. Swarling case 5 algorithm
In case 5, the expression of Marcum steady target model in
Eq (38) can also be modified by substituting the infinite
power series for the modified Bessel function I,(X) given by
Iy(x) = (X )”z.j (3 (96)
= K N"’K)'
and interchanging the order of summation and integration, one

obtain the probability detection for case 5 as:

_e-NxE L * ["5:"‘ i (97)

m=Q

By interchanging the order of the summation results in a

efficient computation representation as:

p _N A b+ -Y, (1 - NX) ) (98)
DS ’;0 ¥ MZ.N Ee

The right hand side of equation (98) has two terms, the latter
term is a infinite summation of power series, therefore a
recursive evaluation 1is necessary for computing P.

The method to handle this infinite power series is to

separate above equation into two terms. Let
Pps=P +P,; (99)

where L represent the integrated pulses where L represent the

integrated pulses. Let L 2 N, then P, can be represented as
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m-N

N-1 m L
O

meQ ‘' m~N K=0

the error term P, can be represented as

P=E -YY (1 Ee-Nx(Nx) )

e
melL+l

if let P, =P,; then the truncated error term will be P,

_yy (1 ; (NX) ke-m

u-Lol

Ley-N

_ -yY (Nx)*e ™
<(1 ”; D) (- ;; )

Let L be large enough such that

Therefore
(104)

An upper bound can be found to limit the desired accuracy
and avoid the unnecessary computation. The computer

independent algorithm is in Figure 23.




S

S

RERERLQH

TrTrTrrrrTrrtTTrTTTTT

XBS
L <€

TTTT

T

enter Y,,N,S

X * N
EXP ( -Yb)

£ + YM
+ 1

S

P (-XI)

BRREE=3R%"3

YM o Yb/M

YMS + YM

SUM + YM (1 - XBS)

M+ 1

M- N

XB o XN/K

XBS + XB

(1L - YMS) (1 - XBS)

SUM -——mcc-m-mceeeo > eXIT WITH pgs

Figure 23: Algorithmic program for Swerling S Target, P,
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2. 8Solving for round off error

Round off error can take place during the calculation of
case 5. That is because during the calculation of probability
of detection, if the signal-to-noise ratio x is zero, the
output detection probability will become the probability of

false alarm, then the criterion in Eq (103) will become

L L+1-N
€(L)s(1-Y e-YY (1- ; (Nx)"e

m=Q

L+1-N

- Nx (105)
<(1-1) (1- 32 ”""‘e")

<0

Since we can not set the minimum acceptable error to be
zero, the computation process will not terminate. Due to this
reason, trade-off between the accuracy and the maximum value
of output data should be made. An algorithm to compute the
threshold y, to deal with the round off error is in Figure 24.
The corresponding MATLAB file name is Marcum.m which can be
used to compute the maximum acceptable threshold level y, when
the value of signal-to-noise ratio is zero and the number of

pulses 1is large.
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Enter P,., Y,

Y : B

M - 0

YLX ¢ 0

YLOG « LOG(Y)

TSUM & EXP(-Y)

M — M+1

M — N-1

SUNK : LOG (M)

YLX ¢ YLX+YLOG-SUNK
TSUM+EXP (YLX-Y)

Y, Y+LOG (XP,, *TSUM) *TSUM/EXF (YLX~Y)

LOG(N)
YLX+YLOG-SUNK
EXP (YLX-Y)
Y, Y, ~cccccccccncccc-- > Y,

Pigure 24: Algorithmic Program for Detection Thresholds, Y,
with round off arror praventation




3. Solving for underflow and ovarflow

As mentioned before, the maximum acceptable number for
MATLAB is nearly e '09-7827128933840409999%% ¢ he ynderflow and overflow
problem arise due to the fact that the power series in M-S
equations has the form

e-y%‘ ; (106)

If the calculation for this power series is over the
maximum or below the minimwa number that MATLAB can represent,
then the MATLAB will return a string named NaN or empty matrix
({ }]) and the whole computation process will be meaningless.
If the computation needed large integrated pulse number and
large threshold or signal-to-roise ratio, a special effort
has to be made to retain the accuracy. One method is let the

series be of the form

k
e’y-£;=exp[-y*kln(y)-z:ln(N)]=e" (107)
1

and let the value e ® be compared to the smallest acceptable
Value e'709.782712393]84000999999 ln MATL-AB, Of course e-709.702712893304040999999
is much smaller than the tolerance number € assumed in the
program. If (3 is greater than 709.7821... then increase the
numpber K in above eguation until it is less than 709.7821...
and then start the summation process. This method will save
MATLAB computation of power series with a large number and

avoid the under flow problems. An algorithm for using this




method tc compute the detection probability is in Figure (25),
and the MATLAB source code is threshm.m and 1S5 given 1in
Appendix B.
[} - Ne)
<t - 0
14 B u
B - expimny
’ r—-—- iR - i
< " -0
r_———— '] : Y
w o~ LLI
[ ™ - ™m
= "
n - Mo}
W - A\ LIS 721
(L Mg . YN
UM~ mg
a - P
L] - "o
mo - AL 77}
o - (LT ECRT
SN - S e () - aag)
R ]
- 8 - X e 1AS
‘ t (1~ 1)l - xAg)
P - s
13 S [
wo - int
" - ey
ey - inmy
L 15 S ALY ¢ LY - WP
L ¥ - uiy
LL SEp(-1-nLY)
[ [ : "
ms - ™
[17 . 9
T I n -
a - ey
l = - XK WX/a
I - xR ¢ I8
H w0 "
A - Y
ax - o
X - ingex)
— A - R e
[T
"’- Li% B (RLE « LX = LA®)
’ - NI « ALX
b1 - LXP (~(nx < RLX)Y
. B [ I §

Pigure 25: Algorithmic porgram for computing the probability
of dtection, Py,

with underflow preventation
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4. Input arguments and output data
The table below summarizes all input and output data for

the programs.

PROGRAM INPUT DATA OUTPUT DATA
THRESH .M P, N Y,

! PROB.M Yy .N Pra
SWERL1 .M PN, X Py

‘ SWERL2 .M P, N, x Pos
SWERL3 .M P,.N, x Py,
SWERL4 .M P, N, x Ppy
SWERLS .M PN, x ) 2

THRESHM.M.m N, P, Y,
MARCUM .M Y, . N, x P,y Or Pg
POINT.M N, x PA (numerical)
—R;DPC;;NTM N, x Pd (output data)
RADAR .M Pe/N, x CHART S/N vs Pd
RADAR1 .M Pe/N, X CHART Pfa vs Pd

- MEYER .M PN, X CHART N vs Pd

RANGE. 1 Pe N, X, HART R vs Pd
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RANGE. 3 PN, X CHART R vs Pd j

Table 1 : Input arguments and output data

Where

N=Number of pulses to be integrated

X =average signal-to -noise ratio
Pd= probability of detection
Pr~Probability of false alarm

R= the desired Adetection range

ns=Swerling case number

ol

P
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IV.RESULTS

The M-S detection probability curves can be obtain by
applying the MATLAB programs in Chapter 3. The results can let
the wuser evaluate the detection preobability detection
performance =2asily. The detection range curves can illustrate
relationship between the detection probability and the
detection range by input the properly detection loss.

A. PROBABILITY OPF DETECTION CURVES

As menticned previously, the M-S model arise from the
different fluctuations of target cross section. MATLAB
programs can be used to plot probability of detection versus
per pulse signal-to-noise rati«¢ ror given probability of false
alarm for five cases. Tt <ot xiuc Le asked to determine per
pulse signal-to-noise ratio vaguired for given P, and P,.
This required signal-to-noise ratio can be used to compute
maximum detection range from the radar range equation.

Fig 26 and Fig 27 compare the five target models for a
false alarm of 10°%, and the number of inteqrated pulse as N=10
and N=100 respectively. When the probalbility is larger than
0.33, all four cases in which the target cross section is not
constant requires greater signal-to-noise ratio than the
constant cross section case. This increase in signal-to-noise-
ratio will cause a reduc-ion in detection range. Therefore if

the characteristic of the target cross section are not
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properly take into account, the actual performance of the
radar might not measure up to the performance which is
predicted from the constant target cross section. A greater
signal-to-noise ratio is required when the fluctuations are
correlated pulse to pulse (case 1 and case 3 ) than when the
fluctuations are uncorrelated pulse to pulse(case 2 and case
4). Fig 27 also indicates that when the number of integrated
pulses is large, the case 2 and case 4 will approach to the

constant target case (case 5).

Probability of detection in percent

05 0 5 1015 20 25

(S/N)1, signal-to-noise ratio, DB

|
Figure 26: Probability of detection curves for five target
models
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P SRSV PEUN S

Probability of detection in percent

5 10 15 20 25
Pigure 27: Probability of detection curves for five target
models

Since both the false alarm rate P, and detection
probability P, are specified by the system requirement, the
radar designer computes required signal-to-noise ratio from M-
S curves and uses this to compute the maximum detection range.
The greater the number of pulses integrated, the greater is
resulting overall signal-to-noise ratio. This results in
greater probability of detection, but it will require longer
scan time. PFigure 28 and Figure 29 give plots of P, VS SNR
for selected P, 's for case 1 for N equal to 100 and 500

respectively.
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100 = 100
9. Pfa = 1e-06 to le-12
" pfastep = 10 _

g 80?— le-06 -
2 70- 5
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B 40r .
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3 30- -
2
e 20~ 1
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(S/N)1, signal-to-noise ratio, DBls 20

i‘igure 28: Probability of detection curves for Swerling case
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l;.iqure 29: Probability of de%gction curves for Swerling case




Figure 30 and Figure 31 are the Swerling case 2 plots of
P4a Vs SNR with 10 and 100 pulses integrated respectively. From
Figure 30, signal-to-noise ratio of 4.8 db approximately is
required to yield a probability of detection of 0.8 with 10

pulses integrated and probability of false alarm of 107°.

100 , —
| n=10
pfa = 1e-06 to le-12

9Ot- pfastep = 10

80}

le-06
70+

60
50
40
30
20

Probability of detection in percent

10

(S/N)1, signal-to-noise ratio, DB

;igure 30: Probability of detection curves for Swerling case
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100 ——
]n = 100

rpt’a = 1e-06 to le-12

pf

20 astep = 10

80
70+
60+
50}
4OL
30+

20

Probability of detection in percent

10

0 \

(S/N)1, signal-to-noise ratio, DB

Figure 31: Probability of detection curves for Swerling cage
2

Figure 32 and Figure 32 show the Swerling case 3 with 10

and 100 pulses integrated respectively.
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100
| B9 06 10 1e-12
pfa = 1e-06 to le-

- 90i" pfastep = 10
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5 4 f / /
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Pigure 32: Probability of detection curves for Swerling case
3

100: n = 100
90~ pfa = 1¢-06 0 le-

pfastep =

8o-
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§ 1e
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(S/N)1, signal-to-r.oise ratio, DB

Figure 33: Probability of detection curves for Swerling case
3
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Figure 34 and Figure 35 show Swerling case 4 pulse to
pulse fluctuation with 10 and 100 pulses integrated

respectively.

n=i0 )
pfa = 1¢-06 to |
pfastep = 10

Probability of detection in percent

4 L] 6 7 8 9 10
(S/N)], signal-to-noise rauo, DB

Pigure 34: Probability of detaction curves for Swerling case
4

Probability of detection in percent

4
(S/N)1, signal-to-noise ratio, DB

Pigure 35: Probability of det7ect:ion curves for Swerling case
4 1




Figure 36 and Figure 37 are Swerling case 5 steady-state

target with 10 and 100 pulses integrated respectively.

100 = .
9o| N 77 i
R |
£ sor !/ ‘
P vy |
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Figure 36: Probability of detection curves
4

for Swerling case
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Pigure 37: Probability of detection curves for Swerling case
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B. THE DETECTIOON RANGE CURVES.

The ASR-9 radar is used as a sample to compute maximum

detection range. ASR-9 radar is designed for surveillance of

the terminal area around airports. A significant feature of
this S-band radar is its use of moving target detection (MTD)

processor which provides coherent integration among other

features. The parameters of the ASR-9 radar are given in table

below. Also tabulated is the empirically determined search

detection range on a 1 m’ target

for the various Swerling

models with a P, =0.9 and P, =10"%.

e

ASR~9 PARAMETERS AND RANGE CALCULATION

P.=1200 kW ranges

£=2900 MAZ R, =39.41 nm

Tt=1.05 us R, =52.41 nm

o =1 R,»46.68 nm

G.=33.5 db R,»57.29 nm

G,=33.5 4B Ry=62.63 nm

NF=5 Aas

I,=1248

0=1.3° Losses

0-=75°/ sec

PRP=1200 pps Transmitter 2 4B

Bpepp*150 Hz Receiver 2 4as

P,=0.9 Mismatch 1 as

Peo=10°¢ Intagrator 1 as

pel Collapsing 148
Beanm Shape 3 am
MTI 2 A4

Total 12 4B

Table 2 :

ASR-9 PARAMETERS AND RANGZ CALCULATION
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Probability of detection in percent

(S/N)1. signal-to-noise ratic, DB

Pigure 38:

Probability of detection curves for five target
models
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Figure 39: Range

detection curves
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C. Numerical data output from probability of detection
programs.

A table of values below is included for the purpose of

checking the programs.

——
Y, xe).162378 %10

%2100 x=316.2278

.957383959769
4

xe31.62379

11.815508% .0161810926607 .2048035070497 .6547559279453¢ .8721557722137

.0161810926607 .1848035870497 -4547559279452 .8721857732127

.957383953769
4

0202712698585

-29188439319447

-77944622707425

.9625961346032

.995941497060
S

.0202659173728

.2910020911596¢

< 779467040840892

.965256647567¢€

-995941410232
7

0045852017166

.3480487019045

-99722503883063 -9999993192496

19.1291681

.1971745188115

.$76906259618)

.036470259638)) .9446918645047

.999999%519246
3

e

.90212606325¢
[

.1630815180577

.7460903012970

-97020931643218

.9990169462157

-998$965068946
1

1784365463374

.5069964902258

.94510656525209

.9933271493948

-99928075354)
3

1168031960489

8340491394154

9977036152469

.9999940409495

£999999991764
|

.0888130400938

-9727253372428

.99999920934109

.9999992023418
O

Yy

-9999932309341
9

x%), 102278 xw10 xe)1.62270 x9100 xe316.2278

32.7013405

..48554340894507

.7911151202538

.93082416537967

.9765960615308

.992832970604
2

.7)3097033467608

-998966753319)

.99999988582414

.999999999997)

1

.5693747270410)

-91394%249315¢

.960C426879910

.9938084719701

.999077746209
S

-79178938715194

.999%629142206

.999995999997¢9

1

1

.8355167094356

-99999915242371

.999799152438)9

Y'

x=}.16227¢

ra—
xe10

xw)l.62278

-999999152429)

xe100

1999152428
)

xnl)l6.2278

63.5481801

.69052634181006

0917070566484

.96439071448000

.9905518113333

.996196543324%)

9994472994279

.9999999999989

1

1

1

.81479000711135

.9759019990504

.99728580211079

.9997180163670%

.999971437170%¢

.99993127276189)

1

1

1

1

-999998744645918

.9992992846098

.99999920460907

.99999930460987
N

.99999284460907




V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

Radar detection theory is outlined in this thesis and
computer programs are developed for probability of detection
calculations in MATLAB. These programs are based on radar
detection theory as developed by Marcum and Swerling. These
programs give more accurate results than the commonly
available programs based on the detectability method which is
empirical is native. A user's guide and instruction are
included in the thesis. Simple examples of the programs usage
are illustrated in the thesis.

Students can use the programs written for this thesis to
investigate radar system performance. These programs are cost
effective, convenient to use and easy to reproduce since they
are run on personal computers that are readily available to
students. In particular, the program can aid students by
removing a major computational burden to allow him to perform
real world detection calculations. These programs can also be

used for calculations in radar developnent work.

B. RECOMMENDATIONS

Due to an overflow underflow problem the programs are
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limited to integration of 600 pulses in the probability of
detection calculations for all S cases. Most of the time this
does not present any limitation as most radars integrate fewer

than 600 pulses. However it may be desirable to remove this

limitation by employing a Chernoff bound or other methods.




Ayroendix A
The gram-Charlier Series is a series expansion of a
probability density function in terms of the Gaussian
function, its derivatives ard the moments of the original
density function.
If P(x) is a probability density function that is nearly
Gaussian and x has zero mean and unit variance, then the Gram-

Charlier series expansion of P(x) ‘5 given by

P(x) =Z a; $'' (x) where

1=0

(A-1)
- . - 1 e_xZ/,

Vem (A-1.2)
¢'1] (x) =d1$(x)
dxi

P

Coefficient a, can be evaluated in term:. of the Hermite
polynomials:
¢! (x) D, (-xi/2) g1 (x)
Y27

Some typical polynomial are

H,(x) =1, H (x) =x%=6x%+3

H (x)=x, H, (x)=x%-10x3+15x

Hy(xj:x*-1, Hg(x)=xt-15x%+45x%-15

Hy(x)=x-x, H,{X)=x -21x°+105x°-105x

A recursive relation for these polynomials 1is




Hyuy (X) =XH,(X) ~1H,_, (X) (A-4)

A particularly useful fact is that the hermite polynomials and

the derivatives of the Gaussian function are Dbiorthogonal.

That 1is,
[ 4% () H; (x) ax
=(-1)% 1t & (A=5)

{(-1)1 iy, i=7
0 1wy
To evaluate coefficient a,, both side of Eg(A-1) are
multiplied by H,(x) and result is integrated from -o to .

With Eg(A-3), the result simplifies to

=(~1)1 - A‘G
a=—— [ pix)H (x) dx (A-6)

The first three coefficients a, a, and a, can be found by

substituting Eq(A-3)into Eq(A-6)
a°=f'p(x) dx=1
a1=-f. Xp(x) dx=0 (A-7)
s_l_ - 2.1 Y ai 1- o
a, 2!f__ (x7-1]) P(x) dx== (1-1) =0

With these results, the Gram-Charlier series expansion of p(x)

in EqQ(A-1) can be simplified to

when the mean of random variable x is not zero and/or i:cs




p(x) =0 (x) +}: ¢’ (x) (A-8)

1®3

variance O is not unity, the Gram-Charlier expansion of p(x)

is obtained by expanding a related density function g(t) in a

Gram-Charlier series, where

t:__x_x (A-g)
a

By a simple transformation of variables it follows that

git)

pi{x) = ax |c-(x-3/o
dt

(A-10)

_:Z)
a

—

-1
=9

If the Gram-charlier series expansion for g(t) is

g(e) =Y o (¢) (A-11)

10

then from Eq(A-10) and Eg(A-11), the expression for p(x)

becomes

D(x) 3%; ci¢i('xf;)’{ (A-12)
=0

If both sides of Eq(A-12) are multipiied by H[(x- X ) / O]

and the resulit integrated from -= to «, coefficient c, can be

evaluated with relation (A-6) as



c= A ["p 0 (X% ax (A-13)

Evaluating Eq(A-13) for the first few coefficients c, yields

Co=1, c‘=le(a4—3)
__ 1 _ 1 -
Cy= ?a, Cs-m(aG 15a4"'30)

where ¢ is the ith central moment of p(x), normalized by «:

a,=—| (x-%)Ip(x)dx (A-14)
P

The « can be expressed in terms of the conventional moments

of the distribution p(x),; thus if m, denotes the nth moment

of p(x) that is

m,,=f'xnp(x) dx (A-15)
then a through ¢ are related to noncentral moments m, by

_m, -3m,m, +2m;
a?
_ my=4mym, +6m,m; -3m;
o‘
mg~5mym, +10m,m? -10m,m? +4m;
05
«. = Pe-6mm, +15m,m? ~20m,m; +15m,m{ -5m;
o=
06

&,

4

(A-16)

o=

In summary, to obtain a Gram-Charlier series expansion,

the moments m, are found from EQ(A-16), or they can be




conveniently computed from the characteristic equation c¢f the
distribution. Next the o, are evaluated using Eq(A-17). The o,
are then substituted into Eq(A-14) to obtain coefficient c¢; of

Gram-Charlier expansion.

82




APPENDIX B

$FILE NAME: MS.M

clear

clg

clc

echo on

%¥THIS PROGRAM IS DESIGNED TO ALLOW THE STUDENT TO

$VARY THE PARAMETERS OF THE VARIOUS SWERLING CASES

SIN ORDER TO STUDY THE EFFECTS.

% CASE #: DESCRIPTION

$ 1. Returned pulses are of a constant amplitude over one
scan, but are uncorrelated from scan to scan.

% 2. Returned pulses are uncorrelated from pulse to pulse
and correlated £rom scan to scan.

% 3. Returned pulses are of a constant amplitude over one
scan, but are uncorrelated from scan to scan.

% 4. Returned pulses are uncorrelated from pulse to pulse
and correlated from scan to scan.

% 5. The static case with constant S/N and pulse amplitude

echo off

pause

clc

k=zmenu ( 'MAIN MENU', 'THE M-S CURVES ‘', ..

‘NUMERICAL DETECTION PROBABILITY CALCULATION', ..

'RANGE DETECTION CURVES*')

if k==1

mscurve

elseif k==2

number

elseif k==3

rmenu

elseif k==4

density

end

% Now restart the process with some different choices

% Clear the workspace of unnecessary data to avoid

conflicts

clear i; clear sav; clear sdb; clear vv, clear pfa, clear

P:clear ns;

clear i; clear savl; clear sdbl; clear vv, clear pfal, clear

P

% Check and see if any info is to change

cle

echo on

¥ If you want to restart the process ENTER CHOICE = 1
%

3 or
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%
¥ To exit this programPRESS RETURN
echo off
choice = input{ 'CHOICE = ')
if choices==
ms
else
end
cle
echo on
$ You have chosen to exit the program
%
% Bye!
echo off

% FILE NAME: RADAR.M

clc

Sormat long

echo
%ttfifi“'ﬁ'ii'**t"ti*"t'ti"tt*'i'*t.ﬁt**Qtt"*'tfﬁ*I‘f"rt'
% THIS PROGRAM RETURNS THE PLOTS FOR THE NUMBER

% OF PULSES AND SWERLING CASE SPECIFIED IN THE PARAMETERS.
% THE PLOTS WILL BE STORED IN METAFILES UNDER THE NAME

% "RADAR.MET" FOR AN EASY PRINT OUT.

% -
% (A) the swerling case number has to be determined now
%.**Q'i**"Q'_*i“"‘if"*"""'ttﬁ*f*'*'ﬁ'*"'t"i*"'I""'
echo off

ns= input('Enter the case number you want to study °');

echo on

%tt""i’tﬁt'**'tt*i***tttt"*"'t"'f""'ﬁ*"'t"**'ﬁt*‘*"*

L

% (B). The number of radar pulses the program is to
3 integrate needs to be an integer between 1 and
600.

%&*'Qtiﬁ"ﬁtﬁ"'tﬁﬁ"*""'"tﬁ*'ﬁ!i.w't'ﬁ**"ﬁ".'*"'*"i'

echo off
n=input( 'Number of Pulses to be integrated is n = ');
cle

echo on
%'vt"ﬁviittf'tt"tc*"'ttatttit'tt'ttttthwttﬂttt*t'*ti.t"
$ (C). The probability of false alarm rate curves (pfa)

to be plotted

$ must now be determined. Each choice of a pfa will result
in a different

% curve being plotted on the graph. You need to choose the
following;
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1. The smallest pfa curve to be plotted, pfamin = ?

2. The largest pfa curve to be plotted, pfamax = ?

3. The step size between pfamin aand pfamax, pfastep =

If you wish to plot only one curve then enter the same
alue for
pfamin and pfamax.

I P I < IR IRV P ORI JF 0P

The suggested default step size to use is that of
PFASTEP = 10,

% which is quite sufficient. Tt is suggested that
pfamin and pfamax .

% be powers of 10 as that is the normal choice.

%"t'**i*"ti"tittQtt'*"""tt"""'t"***'*"*"*‘f'*"'

echo off

pfamin =input('pfamin '

pfamax =input('pfamax K

pfastep=input ( 'pfastep = ')

cle

echo on
%tt"ttt't***ti*tt"*".'"tttt""'*t*ﬁ""'tﬁ"*'"‘t"ﬁtit
£ (D). The signal to noise ratio (S/N) in dB for which
you wish to

plot needs to be determined. The choices you need
to. make are;

The smallest S/N point to be plotted, sdbmin = ?
The largest S/N point to be plotted, sdbmax = ?

Remember that S/N must be entered in dB.

%
%
%
%
%
%
%
%
%
%

3. The stepsize between sdbmin and sdbmax = ?
%tttoct*ttwt"""t-v.t"twﬁtttqa«ﬁt*‘tw*'tattiﬁt.tt"*"*'
echo off

sdbmin =input('In dB the sdbmin is ‘')

sdbmax =input('In db the sdbmax is ')

sdbstep= input('In db the sdbstep is ')

clg

cle

echo on

% CHECK YOUR PARAMETERS

e A D S o L D G D R W T D R ER e P R e e S e T AR S WP SR e S D R D R G R R R Ee e AP WD AR e S

echo off
fprintf('The case number you is %8 2£\n',ns);
fprintf('The number of pulses ycu cnoice are %8.2f\n',n);
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fprintf('The max false alarm probability you choice is
%8.2e\n' ,pfamax); ‘
fprintf('The min false alarm probability you choice
are%8.2e\n' pfamin);

fprintf('The pfa stepsize is %8.2f\n', pfastep');
fprintf('The max signal-to-ncise ratioc you choice is
%8.2£\n', sdbmax) ; '
fprintf(‘'The min signal-to-~-noise ratio %8.2f\n', sdbmin);
fprincf('The S/N stepsize is %8.2f\n',6 sdbstep');

echo on

$IF THE PARAMETERS ARE CORRECT PRESS 1
$IF THE PARAMETERS ARE NOT CORRECT PRESS 2

i echo off
choice=input (' CHOICE= ')
if choice==

radar

elseif choice==

end

echo on

%t'*"Qﬁii"'t*'f*'.*"ﬁ""'i'.""ﬁw"'i""""-'i*.*"'

% Now rup the calculations for the above data and plot it
%"'*"'i‘""l**ﬁ't't"'t'ﬁﬁt"""ﬁ"""*'i.i""t'i"'C**.'
echo off
%$delete radar.met
format long
nmax = 700;
axis{('square"); '
vir={ sdbmin sdbmax 0 100):
axis (vv);
ifn<1 | n> 600 | n-=fix(n),
error( 'Number of pulses input exceeds dimensions')
end
ifns <1 | ns >5 | ns-=fix(ns),
error('Swerling case input does r.ot correspond to
allowable choices')
end

pfa=pfamax;

sdb = sdbmin:sdbstep:sdbmax;
kk=1length (sdb) ;

sav = 10 .*(sdb/10);

if ns ==

% swerlingl
while pfa >= pfamin
for i= 1l:kk
%1 = l:sdbmax-sdbmin+l
pli)=swerll(pfa.n,sav(i));
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p(i)=100*p(i);
end

plot(sdb,p, '~');grid;title('SWERLING 1');
xlabel ('(S/N)1l, signal-to-noise ratio, DB'),
ylabel ('Probability of detection in percent ')
text (sdbmin + 1/20*sdbmax.95 ,('n = ',int2str(n)])
text(sdbmin + 1/20*sdbmax, 90, ('pfa =
‘,num2str (pfamax), ' to ',num2str(pfamin)])

text{(sdbmin + 1/20*sdbmax, 85, ('pfastep =
',num2str (pfastep) )
gtext ( (num2str (pfal)]);

hold on

pfa = pfa/pfastep;
end
pause

meta radar
elselif ns==2
$swerling2
pfa=pfamax;
while pfa >= pfamin
for i= 1l:kk
$ for i = l:sdbmax-sdbmin+l
p(i) =swerl2(pfa,n,sav(i));
p(i)=100*p(1i);
end
plot(sdb,p, '-'),title('SWERLING 2');
grid, xlabel('(S/N)1l, signal-to-noise ratio, DB'),
ylabel ('Probability of detection in percent')
text(sdbmin + 1/20*sdbmax,.95 ,('n = ', int2str(n}))
text(sdbmin + 1/20*sdbmax, 90, ('pfa = ', num2str(pfamax), '
te ', num2stri{pfamin)])
text(sdbmin + 1/20*sdbmax, 85, [ 'pfastep =
',num2str (pfastep) ])
gtext ( ([num2str (pfa)l);
hold on
pfa = pfa/pfastep;
end
pause;
meta radar
elseif ns==
$swerling3
if n ==
grror('algorithm for swerling 3 does not work for n=1')
en
while pfa >= pfamin
for i=1l:kk
$for i = l:sdbmax-sdbmin+l
p(i)=swerll (pfa,n,sav(i))};
p(i)=100*p(i);
end




plotisdb,p. '-'),title( 'SWERLING 3');

grid, xlabel('(S/N})1l, signal-to-noise ratio, DB'),
yvlabel('Probability of detection in pexcent')

text (sdbmin + 1/20*sdbmax.,95 ,[('n = ',int2strin)])

text (sdbmin + 1/20*sdbmax, 90, ('pfa = ', num2str(pfamax), '’

te ',num2str{pfamin)})

text (sdbmin + 1’20*sdbmax,85,['pfastep =
‘,num2str(pfastepl])

gtext((num2str(pfa)]):

hold on

pfa = pfa/pfastep;
end
pause;

meta radar
elseif ns==
$swerlingd
while pfa >= pfamin
for i=1:kk
%fcr 1 = 1l:sdbmax-sdbmin+l
p(i)=swerld(pfa,n,sav(i));
p(i)=100*p(1i); ‘
end
plot(sdb,p, '-');:title( 'SWERLING 4');
grid; xlabel('(S/N)1, signal-to-noise ratio, DB');
vlabel ( 'Probability of detection in percent')
text (sdbmin + 1/20*sdbmax,95 ,('n = ',int2str(n)})

text (sdbmin + 1/20*sdbmax, 90, {‘pfa = ', num2str(pfamax),’

to ',num2str(pfamin)])
text(sdbmin + 1/20*sdbmax, 85, ('pfastep =
‘,num2str(pfastep)})
gtext([(num2str(pfa)]);
hold on
pfa = pfa/pfastep;
end
pause
meca radar
else
$swerlings
while pfa >= pfamin
for i=1:kk
% for i = l:sdbmax-sdbmin+l
p(i)=swerlS(pfa,n,sav(i));
p(i)=100*p(i);
end
plot(sdb,p, '-'),title('SWERLING 5');
grid, xlabel('(S/N)l, signal-to-noise ratio, DB'),
ylabel( 'Probability of detection in percent')
text(sdbmin + 1/20*sdbmax,95 ,{'n = ',int2str(n}})
text (sdbmin + 1/20*sdbmax,90,( 'pfa = ', num2str(pfamax), '
to ',num2str(pfamin)))
text (sdbmin + 1/20*sdbmax, 85, ('pfastep =
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',num2str(pfastep)])
gtext ( (num2str(pfa)l):
hold on
pfa = pfa/pfastep;

end
pause
meta radar

end

hold off

$FILE NAME: SWERL1.M
function pd=swerll(pfa,n, sbar)

%i"'.‘it"Q*it*"'Q""-***"'."*"'*""'ﬁt"*""i""*'"
% RETURNS THE VALUE OF THE PROBABILITY OF DETECTION FOR THE

SWEPLING1
% CASE, GIVEN THE NUMBER OF PULSES n, THE PRCBABILITY OF

FALSE ALARM

% PFA AND THE AVERAGE SIGNAL TO NOISE RATIO S/N.

% EXAMPLE: SWERL1(PFA,N,SBAR);
%tti*'0.*"t""'."'ﬁ't*it"'ﬁ""tt'ﬁﬂ'it*"tfﬁ'ﬁt"*tt"'
format long

vyb=thresh(pfa,n);

v=yb/ {l+n*sbar) ;

cte=z(l+l/n/sbar);

pd=prob(n-1,yb)+cte”(n-1) *exp(~-y)*(l-prob(n-~-1l,yb/cte));
return - :

end

% FILE NAME: SWERL2.M
%

AAAA A A SRS SSZ R R AR R 22X RR R 222 RSS2 R R AR R RS S R SRS X AR

% RETURNS THE VALUE OF THE PROBABILITY OF DETECTION FOR THE
SWERLING2

% CASE, GIVEN THE NUMBER OF PULSES n, THE PROBABILITY OF
FALSE ALARM

% PFA AND THE AVERAGE SIGNAL TO NOISE RATIO S/N.

% EXAMPLE: SWERL2(PFA,N, SBAR) ;

%*i't""t'tt**t"'Q.Q.*tt""t'iit*'.tti"'*'f"'i*'*"*"'

function pd=swerl2(pfa,n, sbar)
yb=thresh(pfa,n);

y=yb/ (l+sbar) ;

pd=prob(n,y);

return

® FILE NAME: SWERL3.M

%t*t"ft*"ﬁ"ﬁ"t"""".titti**tt.'*i*'t'ti*"*t.t"""*"

% RETURNS THE VALUE OF THE PROBABILITY OF DETECTION FOR THE

SWERLING3
% CASE, GIVEN THE NUMBER OF PULSES n, THE PROBABILITY OF
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FALSE ALARM

S PPA AND THE AVEPAQE SIGHAL T2 11518E PATIO S/11.

S EXAMPLE: SHEPLIUFFA . U, ERAN)
‘OOQ........QQ..Q.............I.'QQQOOOOO...0.'..'9'!0.0....
function pl=awer.)(jfa, n,sbLetr)

Yoethreshipfa,ni,

?él;

for Vel ,lin=2,

YeybL/hty,

ehd

yleZ®Yh/ (n*abars2)

Yeytenp(-yh)°yl,

Yart(n®esbar«2) /n/Bbat) * (n=2)*axpisyl)*(}-2%n=2)/n/sbatsyl);
Y74y2° L1 probin-) . yh*nesbar/ (n*sbatel)))

pdeyeprobin-4, yureya,

tetutn

SV PILE HAME, SWiIERLE M
‘..‘.0.D..0!!'..'0!00!0!..l.....!.'..'OOQ.O.QOQOQQQO"."Q..
bV RETURNE TUE VALUE OF THE FROBABILITY GF UETECTION FOR THE
EviEnrL Ity é !
V CASE, OIVEN ‘THE HUMBER OF FULEEE 1. THE FROBABILYTY OF
FALSE ALAMM
S PFA AL THE AYERAGE BICHAL TO NHOLEE FATIO /1.
§ ELAMPILE, BWERLG (FPA. U, EDAR)
‘.QlliQl.....'.O0.00.-..0000lIQO0..'!..09l.......'..!."!..o
tundtiun pdenwer lé(pfa,n, shar)
yhiethreahipfe, i,
Veltyls/ (abar o),
Cre(i/(aliape2) )y,
YMeay) . ( :v)
YHY=YH,
fer Hel =}
YH=YH v/ H,
'{Hg—“llng 4 ‘(H;
o))
BUM=YHY4,
ZF%@ZV.
ful Henotdon- )
YM=YH'v/H,
BUH = BUM » YHe1)-2y3y,
W o BLAL*2Y  12%n=H)/ (4 (K-Nnel)),
e « L¥E « LY,
&ng
pdebhUM,
reLuLny

SFILE HAME  uvikrLY 1

!'Q!I...I.QIIQIll.’..lllll...ll..lll.DQ.DOOQQ......OQQQOQQQO

bORRITUIIG THE VALUE OF THE FRUBADILITY OF DETECTION FOR THE
BrERLINUY
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FALSE ALARM

% CASE, GIVEN THE NUMBER OF PULSES n, THE PROBAEILITY OF

% PFA AND THE AVERAGE SIGNAL TO NOISE RATIO S/N.
% EXAMPLE: SWERLS (PFA,N,SBAR);

%.""Q'wt'tt'tttt'ttt"ﬁ'ﬁ"'**ttt#""'*"t*"'***"*'t*tt

funczion pdsswerlS(pfa.n, sbar)

ybsthresh(pfa,n);

zsn*sbar;

YM=exp (-yb) ;

OK = 0;

k=n;

YMS=YM,;

for is=l:k-1
YMsYM*vyb/1i;
YMS = YMS + YM;

end

SUM=YMS;

XBuwexp(~2):

YBS=XB;

while OK ==z 0
M=YM*vb/¥;
YMS = YMS + YM:
SUM= SUM+ YM*(1-XBS);
elsl-YMS;
XB sXB*z/(k-n+l);
XBS = XBS + XB;
e2s]l-XBS;
ersel*el;
if er <= le-6

OKsl:

end
k= K+ 1;

end

pd = SUM;

return;

% FILE NAME: THRESH.M

%'t""'tt'ﬁ'i"Q"""""'tt"'ﬁi""'*ﬂ't'ttttitttt't"ti

¥* RETURNS THE THRESHOLD yb FOR A GIVEN PROBABILITY OF FALSE

ALARM (pfa)

¢* AND A GIVEN NUMBER OF PULSES
%* EXAMPLE: THRESH(Pfa,N).

L LAAAA AR A A A A K A A R A R R R R R R R R R R AR R R R R R R 2 A R R A R R

function ysthresh(pfa.n)
format long
it n <1 | n-sfix(n),

exrror( ‘'Wrong input number of pulses');

break
end
if nesl
ys-log(pfa);




return
end
1l = -loglO(pfa);
n2=sqgret(n);1l2=sqre(l):
y=n-n2+2.3%*12*(12+n2-1);
“omp=le-6;
ratio=1;
while comp <= ratio
p=prob(n,y);
ym=1;
for k=1:1:n-1;
ym=ym/k*y;
end;
ym=ym*exp(-y); . '
dely=(p/ym)*log(p/pfal; % correction magitude
y=y+dely:
ratio=abs (dely/y):
end
return

% FILE NAME: PROB.M

%ﬁttt""’i'**ﬁ'ﬁ"."'*O'ﬁ"t"'f"""'"'-"'tt"""i't"

$* THIS PROGRAM RETURNS THE FALSE ALARM PROBABILITY P(n,yb)
as in *
$* SUMMATORY (yb*k/fact(k)) for k=0 to n-1, AND IS A COMMON

FUNCTION -
%* FOR THE PROBABILITY OF DETECTION COMPUTATIONS

%* EXAMPLE: PROB(N, YB)
»

%t"ttﬁt***tt't'tt"tﬁ'tt*t*tt'! [ E A XX R R A AL AL AL AARA R A RSl NS

function p=probi(x,y)
if x< 0 | x~=fix(x),
error ('Number of pulses should be integer and greater than
zero'),break, end
inf==1.797693134862069*10~308;
E=709.782712893384040999999;
p=0;
1f x==
return;
elseif x==
p = exp(-y):
return;
else
% (1f x>1)
t=1;
for k=1:1:x-1;
t=t/k*'y;
pst+p;
end
p=(p+l)*exp(-y);




end
return;

%File name: THRESHM.M
function ybsthreshm(pfa.n)
tol=le=6;
E=s709.782712893384040999999;
1 = -loglO(pfa):
n2ssqgrt(n);l2=sqre(l):
ysn-n2+2.2%17*(12+n2-1);

plogmloglO(pfa);

xpfas l/pfa;

ok=Q;

while ok==s0

if y < E

ma(;
y1lx=0;
vlogslogly):

tsumwexp(-y);
for m = 0:1:n-1
mem+1;
sunkslog(m);
ylxs ylx+ylog ~sunk;
caumstswn+exp (Ylxey);
end
yluy+log (xpfa*tsum) *tsum/exp (y1x-y)

if abs(y-yl) < tol

yb=yl;
ok=1;
retuzrn
else
y=y1l;
oku0;
end
else
mul;
ylx=0;
ylogs=log(y):
okk=0;

while okkw=0

mesm+1;
sunkslog{m):
ylx=ylx+ylog-sunk;

Y3




1f y-ylx <= E

tsum=exp(ylx-y);
okk=1l; .
else
okk=0;
end
end
if m >= n-1
ylsy+log(xpfa*tsum)* tsum/exp(-y+ylx):
if abs(yl-y) < tol
yb=yl;
ok=1l;
break;
return
else
y=yl;
ok=0:
end

else
for m=m:1l:n-1
sunk=1log(m);
vix=ylx+ylog-~sunk;
tsumztsum+exp(~y+ylx) ;
end
visy+log(xpfa*tsum) *tsum/exp(-y+ylx);
if abs(yl-y) <= tol
yb=yl;
ok=1l;
break;
return
else
y=yl;
ok=0;
end
end
end
end

SFILE NAME: MARCUM.M
function [(p,ymo)=bound(n,y,x)
format long

errsmle~6;
E=709.782712893384040999999;

‘Qﬁtt'i start the progrm 'EEXZEEEEESEAAREE A A SRR &AL L A
lamdal=(n/(2*y) ) "2+ (n*x) /y;

lam(asl-(n/(2*y) i -sgrt(lamdal) ;
auxl={-lamda*y)+(n*x*lamda)/(1-lamda);
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aux2=exp{auxl)/(l-lamda)™n;
if aux2 <= err
aux3d=n*(x+1l);
if vy >= aux3
p=0;return
else
p=1l:return
end
else

ib=n-1;

k=0;

X=Nn*x;

if x <= E
xk=exp(-~x) ;
Xks=xk;
=0;

for m=1l:n-1
ym=ym*y/m;
YMS SYMS+ym;
xf err>(l-yms)
. p=yms;
ymo=ym
x=x/n;

return
end
end
m=n-1;
SUM=yms ;
ymo=ym
ok=0;
while ok==0
k=k+1;
m=m+1;
ym=ym*y/m;
YMS=yms+ym;
sum=sum+ym* (1-xks) ;
Xk=xk*x/k;
xks=xks+xk:
ans=(l-yms)*(Z-xks});
if ans<= crer
ok=1;
end
end
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p=sum; ymo=ym;

else
ymly=0;
ytog=log(y);
okk=0;
while okk==
m=m+1;
amf=log(m);
ymlyaym1y+ylog-xmf:
if (y-ymly) <= E
ym=exp (-y+ymly) ;
okk=1l;
else
okk=0;
end
end
if m <= ib

yms =yms+ym;

if err>(l-yms)
p=yms:
ymo=ym
x=x/n;
ook=1:;
return

end

end
SUM=yms;
ymo=ym
ok=0;
while ok==0;
k=k+1;
m=m+1l;
ym=ym*y/m;
YIS SYMS+YM;
sum=sum+ym* (1-xrs);
xk=xk*x/k;
xrs=xrs+xk;
ans=(l-yms)*{1-xrs);
if ans > €rr
ok=0;
else
pssum;
x=x/n;
break;
return;
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ok=1l;
end
end
p=sum; ymo=ym;

else R ettt for m>» ib;
ymo=0;return
yms=ym;
sum=0;
kd=m-n;
if kd > x
p=0;
X=X/n;
break;
return;
else
okkk=0;
while okkk==0;
k=k+1l;
kk=xk*x/Kk:
xks=xks+xk;
while (k-kd) < 0
okkk=0;
end
end
ooook=0;

while ooook==0;
sumssum+ym* (1-xrs) ;
xk=xk*x/k;
Xrs=xXrs+xk;
ans=(l-yms)*(l-xrs);
while ans < err
p=sum;
x=x/n;
ooook=1;
break;
return




xlog=log(x);
ooocok=0;
while ocook==
k=k+1;
xklx==xklx+xlog-xk¢f;
while ({x-xKlx) > E
oooks=0Q;
end
end
xk=exp (-x+xklx);
ib=ib+k;
Qece—mcemcmmcccmcccaceese——ee——~—
xks=xk;
m=0;
if y<= E
ym=exp(-y);
yms=ym;
o e e e e m e e e m e e e e m e — e mmmm—————————
for m=1:n-1
ym=ym*y/m;
yTMS=yms+ym; "
1f err>(l-yms)
p=yms;
! ymo=ym;
: x=x/n;
return
end
end
SuUm=yms ;
Yo =ym;
ok=0;
while ok==0;
k=k+1:
m=m+]l;
ym=ym*y/m;
YS=YTS+ym,
sum=sum+ym* (1l -xrs) ;
xk=xk*x/k;
Xrs=Xxrs+xk;
ans=(l-yms)*(l-xrs):;
if ans<= err
ok=1;
end
end
p=sum;
else
ymly=0;
vylog=logly);
okk=0;

while okk==



m=m+1;
sxmf=log(m};
ymly=ymly+ylog-xmE;
if (y-ymly) <= E
ym=exp (-~y+ymly) ;

okk=1l;
else
okk=0;
end
end
if m <= ib
yms=ym;
ook=0;

while ocors==
while m~=ib
m=m+1l;
ym=ym*y/m;
YMS=yms +ym;
if err>(l-yms)
p=yms;
ymo=ym;
X=x/n;
ook=1l;
break;
return
else
ook=0;
end
end
end
sum=yms;
ymo=ym;
ok=0;
while ok==0;
k=k+l;
m=m+1;
ym=ym*y/m;
yms=yms+ym;
sum=sum+ym* (l-xrs) ;
xk=xk*x/k;
xXrs=xrs+xk;
ans=(l-yms)*(l-xXrs);
if ans > err
ok=0;
else
p=sum;
x=sx/n;
break;
return:;
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return;
else

okkk=0,

while okkk==0;
k=k+1l;
¥ x=xk*x/k;
xks=xks+xk;

while (k-kd) < O
okkk=0;
end

end

ococook=0;

while ooook==0;

» sum=sum+ym* (1-Xrs)

xke=xk*x/k:
XYS=XTrSs+xKk;
ans=(1l-yms)*{(l-xrs):
while ans < err
p=sum;
X=x/n:
ooook=1l;
break:
return
end
k=k+1l;
m=m+1;
ym=ym*y/m;
yms=yms+ym;
oocook=0;
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